

Feb 19-8:47 AM

Use quadratic approximation to evaluate
\n
$$
Sin 32^\circ
$$
.
\n $Str32^\circ \approx Sin 30^\circ = \frac{1}{6}$ Linear Approximation
\nLet $S(x) = Sinx$ $Sin x \approx \frac{1}{2} + \frac{\sqrt{3}}{2}(x-\frac{\pi}{6}) - \frac{1}{4}(x-\frac{\pi}{6})$
\n $a = 30^\circ = \frac{\pi}{6}$ Sin $32^\circ \approx \frac{1}{2} + \frac{\sqrt{3}}{2} \cdot 2^\circ - \frac{1}{4} \cdot (2^\circ)^{\frac{1}{2}}$
\n $3(x) = Cosx$ $S(30^\circ) = 1$ So $30^\circ = \frac{\sqrt{3}}{2}$ $30^\circ = \frac{\sqrt{3}}{2}$
\n $180^\circ = \pi$ Rad
\n $1^\circ = \frac{\pi}{180}$ Rad $2^\circ = \frac{\pi}{180}$ Rad.
\n $1^\circ = \frac{\pi}{180}$ Rad $2^\circ = \frac{\pi}{180}$ Rad.
\n $1^\circ = \frac{\pi}{180}$ Rad $2^\circ = \frac{\pi}{180}$ Rad.
\n $1^\circ = \frac{\pi}{180}$ Rad $2^\circ = \frac{\pi}{180}$ Rad.
\n $1^\circ = 5^\circ = \frac{\pi}{180}$ Red.

٦

Show that the Sum of x-int e y-int of
\nany tan, line to the graph of
$$
\overline{X}
$$
 to $\overline{Y} = \overline{JC}$
\nis C.
\n (x_0, y_0) $x^{\frac{1}{2}} + y^{\frac{1}{2}} = C^{\frac{1}{2}}$
\nis C.
\n (x_0, y_0) $x^{\frac{1}{2}} + y^{\frac{1}{2}} = C^{\frac{1}{2}}$
\n $\frac{1}{2}x^{\frac{1}{2}} + \frac{1}{2}y^{\frac{1}{2}} = \frac{1}{2}$
\n $\frac{1}{2}x^{\frac{1}{2}} - \frac{$

Oct 22-7:37 AM

$$
Y-Tnt \t x=0 \t y-y_0=\frac{\sqrt{y_0}}{\sqrt{x_0}}(0-x_0)
$$

\n
$$
Y-y_0=\sqrt{y_0}\sqrt{x_0}
$$

\n
$$
Y-y_0=\sqrt{y_0}\sqrt{x_0}+y_0
$$

\n
$$
Y-y_0=\sqrt{y_0}\sqrt{x_0}
$$

\n
$$
Y-y_0=\sqrt{y_0}\sqrt{x
$$

Find
$$
\frac{dy}{dx}(x, y)
$$
 if $x^3 + y^3 = 2xy$

\n $3x^2 + 3y^2 \frac{dy}{dx} = 2[1 \cdot y + x \cdot \frac{dy}{dx}]$

\n $3y^2 \frac{dy}{dx} - 2x \frac{dy}{dx} = 2y - 3x^2$

\n $\frac{dy}{dx} = \frac{2y - 3x^2}{3y^2 - 2x}$

\n $\frac{dy}{dx} |(x, x) = \frac{-1}{1} = -1$

Oct 22-7:54 AM

Area) of a circle is *increasing* at the
\n
$$
\frac{10}{11} \text{ cm}^2/\text{min}
$$

\nHow $\frac{10}{25} \text{ cm}^2/\text{min}$

\nHow $\frac{10}{25} \text{ cm}^2/\text{min}$

\nHow $\frac{10}{25} \text{ cm}^2/\text{min}$

\nWhen $\frac{10}{25} \text{ cm}^2/\text{min}$

\nWhen $\frac{10}{25} \text{ cm}^2/\text{min}$

\nThen $\frac{10}{25} \text{ cm}^2/\text{min}$

\nThen $\frac{10}{25} \text{ cm}^2/\text{min}$

\nThen $\frac{10}{25} \text{ cm}^2/\text{min}$

\nThus $\frac{10}{25} \text{ cm}^2/\text{min}$

\

Oct 22-8:00 AM

A street light is 15-St tall A person 6-St tall walks away from the light at speed of 5 St/sec. along a Straight Path. How fast is the tip of person's shadow changing when the person is 40 ft from the light. -ignl $\frac{y}{26} = \frac{2+y}{\sqrt{55}}$ احطا Person Tip of Shadow $\bar{\chi}$ $5y = 2x + 2y$ $3y = 2x$ Now take derivative with respect to time. finish it, and we go over Your answer tomorrow.

Oct 22-8:07 AM

$$
\oint(x) = \frac{x^3}{x^2 + 1}
$$

\n1) Domain $(-\infty, \infty)$ No V.A.
\na) $x - \text{Int } \in Y - \text{Int } (0,0)$
\nb) $\oint(-x) = \frac{(-x)^3}{(-x)^2 + 1} = \frac{-x^3}{x^2 + 1} = -\frac{x^3}{x^2 + 1} = 0$
\n
$$
\oint(x) = \frac{x^3}{x^2 + 1} = x - \frac{x}{x^2 + 1} = \lim_{x \to \infty} \frac{x}{x^2 + 1} = 0
$$

\n
$$
\lim_{x \to \infty} [\frac{x}{x} - \frac{x}{x^2 + 1}] = -\infty
$$

\n
$$
\lim_{x \to \infty} [\frac{x}{x} - \frac{x}{x^2 + 1}] = -\infty
$$

\n
$$
\lim_{x \to \infty} [\frac{x}{x} - \frac{x}{x^2 + 1}] = \lim_{x \to \infty} [\frac{x}{x^2 + 1}] = -\infty
$$

\n
$$
\lim_{x \to \infty} [\frac{x}{x^2 + 1}] = \lim_{x \to \infty} \lim_{x \to \infty} [\frac{x}{x^2 + 1}] = -\infty
$$

\n
$$
\oint(x) = x - \frac{x}{x^2 + 1} = \lim_{x \to \infty} \lim_{x \to \infty} [\frac{x}{x^2 + 1}] = -\infty
$$

\n
$$
\oint(x) = x - \frac{x}{x^2 + 1} = \lim_{x \to \infty} \lim_{x \to \infty} [\frac{x}{x^2 + 1}] = -\infty
$$

\n
$$
\oint(x) = x - \frac{x}{x^2 + 1} = \lim_{x \to \infty} \lim_{x \to \infty} [\frac{x}{x^2 + 1}] = -\infty
$$

\n
$$
\oint(x) = \frac
$$

Oct 22-8:16 AM

\n
$$
\text{Use } \varepsilon \neq \frac{1}{5} \quad \text{To prove } \lim (x^3 + x^2) = 2 \checkmark
$$
\n

\n\n $\text{So, } x^3 + x^2 \quad \lim (x^3 + x^2) = \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{2}{1} \cdot \frac{3}{1} \cdot \frac{1}{1} \cdot \frac{2}{1} \cdot \frac{3}{1} \cdot \frac{1}{1} \cdot \frac{2}{1} \cdot \frac{2}{1} \cdot \frac{1}{1} \cdot \frac{2}{1} \cdot \$

Oct 22-8:30 AM